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Abstract: This work focuses on the mathematical analysis of the controlled release of a standardized
extract of A. chica from chitosan/alginate (C/A) membranes, which can be used for the treatment
of skin lesions. Four different types of C/A membranes were tested: a dense membrane (CA), a
dense and flexible membrane (CAS), a porous membrane (CAP) and a porous and flexible membrane
(CAPS). The Arrabidae chica extract release profiles were obtained experimentally in vitro using PBS
at 37 ºC and pH 7. Experimental data of release kinetics were analyzed using five classical models
from the literature: Zero Order, First Order, Higuchi, Korsmeyer–Peppas and Weibull functions.
Results for the Korsmeyer–Peppas model showed that the release of A. chica extract from four
membrane formulations was by a diffusion through a partially swollen matrix and through a water
filled network mesh; however, the Weibull model suggested that non-porous membranes (CA and
CAS) had fractal geometry and that porous membranes (CAP and CAPS) have highly disorganized
structures. Nevertheless, by applying an explicit optimization method that employs a cost function
to determine the model parameters that best fit to experimental data, the results indicated that the
Weibull model showed the best simulation for the release profiles from the four membranes: CA,
CAS and CAP presented Fickian diffusion through a polymeric matrix of fractal geometry, and only
the CAPS membrane showed a highly disordered matrix. The use of this cost function optimization
had the significant advantage of higher fitting sensitivity.

Keywords: cost function; controlled release; Arrabidae chica Verlot; chitosan/alginate membranes

1. Introduction

Arrabidaea chica Verlot is a type of shrub found in tropical America, from the south
of Mexico to Brazil, being very common in the Amazon rainforest [1]. As the extract of
A. chica is an important source of tannins, flavonoids and anthocyanins, it presents different
medicinal properties, such as antioxidant, antiseptic, anti-inflammatory and antifungal
activities [2]. One of its main components is the anthocyanin ‘carajurina’, which can be
used as a marker for the detection and quantification of the extract of A. chica.

One of the strategies to deliver drugs and other medicinal substances is through
controlled release systems, which maintain the drug concentration in the blood or in target
tissues as long as possible at a desired value, being able to control the drug release rate and
duration [3]. Different biopolymers have been used to deliver drugs and other compounds
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for the treatment of skin lesions in a local, targeted and controlled manner [4]. One of the
most versatile biopolymers is chitosan, which is obtained mainly from shells of crustaceans,
such as shrimp [5]. In this regard, Servat-Medina et al. (2015) [6] synthesized chitosan
nanoparticles loaded with different concentrations of A. chica extract (10 to 25% relative
to chitosan mass) for the treatment of skin ulcers. Recently, in 2020, our group reported
synthesizing different types of chitosan/alginate (C/A) membranes to be used as controlled
release systems of A. chica extract, as an alternative for the treatment of skin lesions [7].
C/A membranes are attractive because they are insoluble in water, stable to pH variations
and capable of incorporating different bioactive agents into their matrix.

Mathematical modeling of drug delivery and predictability of drug release has been
a field of academic and industrial importance for several decades [8]. In 1961, Higuchi
published his famous equation allowing for a surprisingly simple description of the drug
release mechanism from an ointment base. Numerous models have been proposed since
then, including empirical/semi-empirical as well as mechanistic realistic ones [9]. Con-
sequently, many different mathematical approaches have been proposed to assess the
similarity between drug dissolution and mass transfer profiles [10].

A versatile mathematical tool is the cost function analysis, which is an optimization
process that consists of measuring the difference between real experimental data with the
prediction of a model. The objective of this analysis is to minimize this difference, that
is, to find the parameters that allow the model to fit the data as closely as possible [11].
The cost function can be performed for any type of mathematical model and compared
with various experimental data; regarding numerical optimization methods, local gradient
methods such as conjugate gradients [12,13] or global parameter population methods such
as genetic algorithms [11,14] or deep learning strategies [15] can be applied.

The method in this work focuses on the quantitative assessment of the controlled
release of a standardized extract of A. chica from C/A membranes. First, in vitro experi-
mental A. chica kinetic release profiles were obtained from four different formulations of
C/A membranes: a dense membrane (CA), a dense and flexible membrane (CAS), a porous
membrane (CAP), and a porous and flexible membrane (CAPS). Later, the mechanisms of
the extract release kinetics were determined comparing the r2 coefficient obtained using
five classic models from the literature [16]: Zero Order, First Order, Higuchi, Korsmeyer–
Peppas and Weibull model functions. Finally, as the main novelty of this work, the release
profiles were analyzed using an optimization method implemented by our group that
employs the cost function approach to determine the model parameters that best fit to the
experimental data.

2. Materials and Methods
2.1. Materials

Chitosan (C, from shrimp shells 96% deacetylated and MW = 1.26 × 106 g/mol),
medium viscosity sodium alginate (A, from Macrocystis pyrifera MW = 9.11× 104 g/mol),
Kolliphor P188 (a pore-forming surfactant) and phosphate buffer solution (PBS) 0.01 M
(0.138 M NaCl, 0.0027 M KCl, pH = 7.4) were acquired from Sigma-Aldrich (Sao Paulo,
Brazil). Silpuran 2130 A/B (a silicone polymer) was obtained from Wacker Chemie AG
(Munich, Germany), and glacial acetic acid, calcium chloride dihydrate and sodium salt
from Merck KGaA (Sao Paulo, Brazil). The standardized Arrabidaea chica Verlot extract was
supplied by the Division of Chemistry of Natural Products of the Center for Chemical,
Biological and Agricultural Research (CPQBA) at the University of Campinas (Campinas,
Brazil). The used water was deionized in a Milli-Q System from Millipore.

2.2. Membranes synthesis

Four formulations of C/A membranes containing A. chica extract (10% in weight)
were obtained according to the protocol previously described by Pires et al. (2020) [7]. The
main synthesis differences are summarized as follows: (A) CA membrane: prepared with
chitosan 1% (m/v) in acetic acid 2% and alginate 0.5% (C:A = 1:2 v/v); (B) CAS membrane:
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synthesized with the same CA formulation, but including 10% of Silpuran 2130 A/B;
(C) CAP membrane: obtained by formulating CA membrane plus 10% in weight of the
Kolliphor P188; (D) CAPS membrane: It was synthesized by formulating CAS plus 10% in
weight of Kolliphor P188. In all cases, the membranes were cross-linked with calcium ions.

2.3. Morphology of the Membranes

Membrane samples containing the A. chica extract were microscopically observed and
photographed using a Nikon digital camera (COOLPIX model S3300). The cross section
morphology of the membranes was analyzed using a scanning electron microscope (model
Leo 440i, Leica). Samples of 2 cm × 1 cm were fixed on a suitable support and metalized
(mini-Sputter coater, SC 7620) by depositing a thin layer of gold (92 Å) on their surfaces.

2.4. Release Experiments

To obtain the release profiles, membrane samples (2 cm × 2 cm) containing the A. chica
extract were previously weighed and immersed in a 10 mL of PBS solution containing
20% ethanol at pH 7.4, 37 ◦C and 100 rpm. At predetermined time intervals up to 48 h,
1 mL of the solution was withdrawn for absorbance analysis using a spectrophotometer
(Thermo Scientific Evolution–220, Thermo Fisher Scientific, Waltham, MA, USA) at 470 nm
and then returned to the vial. The analytical curve was prepared using A. chica extract also
dissolved in a PBS solution containing 20% ethanol. All experiments were performed in
triplicate, and mean values were used. Sink conditions were maintained during the drug
release experiments and at predetermined time intervals, the supernatant solution was
completely renewed.

2.5. Mathematical Models

The mechanism of drug release was determined by fitting the mathematical models to
the experimental data using OriginPro 8.5 software. Five models were studied, the main
characteristics of which are outlined below [17–20].

In the zero-order model, the drug is released at a constant rate independent of concen-
tration, and dissolution from dosage forms that do not disaggregate and release the drug
slowly. This model is represented by the equation

Q(t) = Q0 + k0t, (1)

where Q(t) is the amount of drug released at time t, Q0 = Q(t = 0) is the initial amount of
the extract in the solution and k0 is the zero-order proportional constant.

In the first-order model, the release is a concentration-dependent process, and the
equation that gives the release behavior is

Q(t) = Q0

(
1− exp(−k1t)

)
, (2)

where Q(t) and Q0 are again the amount of drug released at time t and the initial amount
of the extract in the solution, respectively, and k1 is the first-order release kinetic constant.

The Higuchi model implies more assumptions, such as that the initial drug concen-
tration in the matrix is higher than drug solubility; drug diffusion takes place only in one
dimension (edge effect must be negligible); drug particles are smaller than system thickness;
matrix swelling and dissolution are negligible; drug diffusivity is constant; and perfect sink
conditions are always attained in the release environment. The general release equation is
given by

Q(t) = kHt1/2, (3)

where Q(t) is the amount of drug released in time t per unit area, and kH is the Higuchi dis-
solution constant. It represents a Fickian diffusion of drugs without the matrix dissolution
taken into account.
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The Korsmeyer–Peppas model is a simple relationship to describe drug release from
a polymeric system. This semi-empirical model analyzes both Fickian and non-Fickian
release of drug from swelling as well as non-swelling materials; however, it is applied
just up to 60% of the drug amount released. The Korsmeyer–Peppas release equation is
given by

Q(t)
Q∞

= kKPtn, (4)

where the ratio Q(t)/Q∞ is the fraction of drug released at time t, kKP is the Korsmeyer–
Peppas kinetic constant, which characterizes the drug–matrix system and n is the exponent
that indicates the drug release mechanism.

The Weibull model is an alternative description for the dissolution and release pro-
cesses, and can be applied for most types of dissolution curves. The Weibull equation
expresses the cumulative fraction of the drug, Q(t), in a solution at time t, by the follow-
ing expression:

Q(t) = 1− exp
(
−(t− Ti)

β/α
)

, (5)

where α is related to the specific surface of the dosage matrix form, β is mainly related
to the mass transport characteristics of the device and Ti represents the delay time before
starting the dissolution or release process, which in most cases is 0.

3. Cost function Analysis
3.1. Definition of Cost Function

We introduce the notation Q(e; t) for a general model that depends on the parameter
vector e. For example, for the Korsmeyer–Peppas model, the parameter set is specified as

e = (e1, e2) =
(
kKP, n

)
.

A standard technique that enables the interpretation of experimental data with a
quantitative model is the formulation as an inverse problem, where the direct problem is
formulated as a mathematical model, such that the distance of the model Q(e; ti) to the data(

ti, Q̂i
)
, i = 1, . . . , N

is described by a cost function [11,21]

F(e) =
n

∑
i=1

µi

∣∣∣Q(e; ti)− Q̂i

∣∣∣p, (6)

where p ∈ {1, 2, . . . } accounts for different metrics of the distance between model and data,
and µi = µ(ti) contains weights of the data points. For p = 2 (in comparison to p = 1), we
have an underestimation respective overestimation of the measurement errors (under the
assumption that the model is correct) for small respective high distances between data and
model. Though, p = 2 applies the concept of least squares, which is more common, in spite
of the bias.

Regarding the weights, there are various choices, as the following prototypes, among
which there are multiple possible variants:

1. Equal weights µi ≡ 1 for all i.
2. Switch off at a threshold time t∗,

µi =

{
1 for ti < t∗

0 for ti > t∗,
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3. Adaptive weights, that gives higher emphasis to smaller times, such as, for example,

µ(ti) =
1

c + ti
, c > 0.

The switch off in case (2) at a threshold time t∗ applies, i.e., should apply, for model
approximations that do not satisfy asymptotic upper limits, such as the models of Higuchi
or Korsmeyer–Peppas, which are designed to be valid for lower times only. As their
unlimited asymptotic behavior is qualitatively wrong, above a threshold value the models
are quantitatively wrong. In favor of the Higuchi and Korsmeyer–Peppas models, the
weighting choice was case (2) with data switch off at t∗ = 8 h. For the Weibull model we
choose case (1).

The inverse problem is solved by minimizing the cost function,

min
e∈Rn

F(e), (7)

that gives the optimal set of parameters e. The mathematical model can have the form
of differential equations that in turn include parametric functions, or the mathematical
model is expressed directly in terms of parametric functions. For the minimization of the
cost function, an issue might be (1) high correlations between the parameters, or (2) its
non-convexity. In the case of high parameter correlation that touch the scale of computa-
tional errors induced by the machine error, even the optimal numerical method cannot
compensate a wrong model choice; it is an issue of model choice. In the case of non-
convexity of the cost function, the optimization method needs to be chosen carefully, or
the experimentation with different optimization methods is subject of research, e.g., global
optimization methods, where populations of parameter sets are optimized, instead of local
methods with only one single parameter set.

3.2. Cost Function Minimization: Optimality Conditions

The goal is to minimize the cost function, that is, to find the parameters of each model
that fits the experimental data as closely as possible.

As a criterion of optimality [22], there is a necessary condition and a sufficient condi-
tion. For two-variable models, the necessary condition for optimality is that the gradient is
equal to zero in each of its components,

∇ f (e1, e2) =


∂

∂e1
f (e1, e2)

∂

∂e2
f (e1, e2)

 =

(
0
0

)
. (8)

The sufficient condition of optimality is that the Hessian matrix

H(e1, e2) =

∂e1e1 f (e1, e1) ∂e1e2 f (e1, e2)

∂e2e1 f (e1, e2) ∂e2e2 f (e2, e2)

 (9)

is positive definite for a minimum, i.e., according to the definition

(
q1 q2

)
H(e1, e2)

(
q1
q2

)
> 0, ∀q1, q2 ∈ R2. (10)

This definition can be written as

q2
1 fe1e1 + 2q1q2 fe1e2 + q2

2 fe2e2 > 0, ∀q1, q2. (11)
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A general criterion of a square matrix of any size to be positive definite is that all
eigenvalues are positive.

3.3. Equivalence of Optimization Methods

The comparison of model predictions with data,

fi(e) = Q(e, ti)− Q̂i, i = 1, . . . , N, (12)

defines a residual function f : Rn → R
N , where we want to find its zeros, which can only

be calculated approximately if the system is overdetermined. An approximation criterion
is the sum of squares

F(e) =
N

∑
i=1

f 2
i (e), (13)

which is equivalent to the cost function (6), but for the specific choice of p = 2 and with
equal weights, i.e. case (1).

There are two different paths to obtain optimal parameters:

• Approximate the zeros of the overdetermined system (12).
• Calculate the zeros of the gradient of the cost function (13), defined as the sum of

squares of the residual.

An iterative procedure that solves an overdetermined system of nonlinear equations,
such as (6) is the Gauss–Newton algorithm. This means that an initial estimate of the vector
parameter must be provided.

4. Methodology: Implementation

The five mathematical models of Section 2.5 were tested in parallel. The generated
process was automated by subroutines (see Supplementary Materials).

Prior to the calculations, the derivatives and the gradients were obtained for one-
and two-variable models, respectively, in order to verify the fulfillment of the necessary
condition. The sufficient condition was satisfied, as for one-variable models the second
derivative, and for two-variable models the elements in the Hessian matrix were different
from zero.

In the implementation, the corresponding equations and the experimental data were
consistent enough to be called by the common cost function subroutine.

The algorithm for the cost function is given in the Algorithm S1 (see Supplementary
Materials for Algorithms). The following criterion has to be satisfied:

c =
N

∑
i=1

J

∑
j=1
|ui(tj)− ûij|2, (14)

where c is the cost function, N is the number of experiments for each membrane in a given
time t (in our case N = 3) and J is the number of data in the experiment. A syntax was
chosen from the model subroutine (Algorithm S2):

u = uModel( t̂ ) ,

where the vector of variables consisted of the observation times, to calculate the solution
of the model at given times. The description of steps to implement this methodology is
presented in Algorithm S4.

It is important to consider that a better fit is expected with the cost function used in
models with several parameters. However, that does not necessarily mean that the type
of model as such is better or that it effectively better explains the phenomenon. Moreover,
a higher number of parameters causes optimization algorithms to have problems when
approaching the ‘optimal’ data, given the higher correlation within the same parameters.
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5. Results and Discussion

The obtained membranes presented the geometrical form of a thin slab. Figure 1
shows photographs and SEM images of the membrane samples loaded with A. chica extract.
The observed intense red color in the photographs (Figure 1A–D) was due to the insoluble
anthocyanin pigments carajurin and carajurone included in the A. chica extract [23]. The
membranes produced without Kolliphor P188 surfactant turned out to be dense and
compact (CA and CAS). However, for the formulations synthesized using the surfactant,
the membranes were porous and thicker (CAP and CAPS). When the silicone Silpuran 2130
was included in the formulation, samples were soft and flexible to the touch (CAS and
CAPS). In summary, the general characteristics of the obtained membranes were as follows:
CA was dense, thin and rigid; CAS was dense, thin but flexible due to the silicone; CAP
was rigid but thick and porous due to air bubbles in its matrix generated by the surfactant;
and CAPS was thick and porous due to the surfactant, but flexible because of the silicone.

Figure 1. Photographs and SEM images of membrane samples loaded with A. chica extract: CA (A,E),
CAS (B,F), CAP (C,G) and CAPS (D,H).

A. chica extract release profiles are shown in Figure 2. Although all samples were
loaded with the same percentage of extract (10% in weight), CA and CAS membranes
released higher amounts of extract per mass of polymer than CAP and CAPS. The burst
release observed in the first minutes of the process can be attributed to the fraction of the
drug which is adsorbed or weakly bound to the surface area of the polymer rather than
to the drug incorporated into the polymer matrix [24]. Moreover, the lower amounts in
porous formulations can be explained by the higher dispersion of the mixture due to the
presence of the surfactant with a consequent increase in the interphases of the extract with
the polymers. For all cases, the maximum amount of extract released was reached at 24 h.
Re-absorption of the extract by the membranes was not observed because the maximum
released values of extract were maintained constant for up to 48 h.

To gain a deeper insight into the mechanisms that govern the release of A. chica
extract from the membranes, five mathematical models were fitted to the experimental
data: Zero-order, First order, Higuchi, Korsmeyer–Peppas and Weibull. Experimental data
were normalized and only evaluated up to 8 h because these models are semi-empiric and
better valid for the first stages of release; as mentioned previously in Section 3.1, where the
weights on the cost function switch off (7) at a threshold value of time t∗.

The switch off is an artificial fix for a model that is valid for short time intervals
and loses pertinence at bigger times. In order to avoid this artificial switch off, one can
select admissible functions for a semi-empirical model that satisfy physically reasonable
criteria. For the drug release model, these characteristics should address at least the
following components:
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1. Zero release at zero time.
2. Increasing cumulative release for advancing time.
3. Existence of an upper bound for the total release at sufficiently long period.

Figure 2. Experimental A. chica extract release profiles from the C/A membranes. Results represent
mean ± SD of three measurements.

These characteristics can be expressed as

Q(0) = 0,
∂Q(t)

∂t
> 0, lim

t→∞
Q(t) < ∞.

With help of these model design indications, we can assess the various models (see
Table 1 for a qualitative model comparison).

Table 1. Model evaluation: Satisfaction status of criteria by considered models.

Model Function Q(0) = 0 limt→∞ Q(t) < ∞

Zero-order equation Q(t) = Q0 + k0t NO NO

First order model Q(t) =
(

1− exp(−k1t)
)

YES YES

Higuchi model Q(t) = kHt1/2 YES NO

Korsmeyer–Peppas model
Q(t)
Q∞

= kKPtn YES NO

The Weibull model Q(t) = 1− exp
(
−(t− Ti)

β/α
)

YES YES

Simulations of the release profiles from each membrane using the indicated models
are shown in Figure 3. From these simulations, the kinetic parameters were extracted and
presented in Table 2. The r2 coefficient (coefficient of determination) was used to compare
the results between models. The value of r2 is usually between 0 and 1, and generally a
higher value means that the model fits the data better; some r2 equal to or higher than
0.95 is considered as a good fitting by linear regression. Therefore, according to the r2

values generated by each model (Zero-order, First-order, Higuchi, Korsmeyer–Peppas and
Weibull) for each membrane (CA, CAP, CAPS and CAPS), the models that best fit the
release profiles were Korsmeyer–Peppas and Weibull. In the case of the Korsmeyer–Peppas
model, r2 values of all samples were higher than 0.95, but in the case of the Weibull model,
the fitting for the CA and CAP membranes returned values of almost 0.95 and for the CAS
and CAPS membranes, values were higher than 0.95.
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Figure 3. Simulations of the release profiles from each membrane (CA, CAS, CAP and CAPS) using
the Zero-order, First-order, Higuchi and Korsmeyer–Peppas and Weibull models.

Table 2. In vitro release kinetics of A. chica from C/A membranes.

Sample Zero-Order First-Order Higuchi Korsmeyer-Peppas Weibull
k0 (h−1) r2 k1 (h−1) r2 kH (h−1/2) r2 kKP (h−n) n r2 α (-) β (-) Ti (h) r2

CA 0.1556 −0.1982 0.0015 −0.1924 0.3827 0.7979 0.5170 0.2872 0.9818 1.7645 0.5014 0.0000 0.9476
CAS 0.1574 −0.9428 0.0015 −0.9351 0.3937 0.5193 0.5897 0.2095 0.9792 1.2335 0.3793 0.0000 0.9507
CAP 0.1580 −1.7429 0.0015 −1.7154 0.4005 0.1652 0.6455 0.1519 0.9720 1.2636 0.2843 0.0000 0.9487

CAPS 0.1602 −2.1602 0.0016 −2.1497 0.4139 −0.0494 0.6889 0.1264 0.9701 1.7013 0.3009 0.0000 0.9531

Korsmeyer–Peppas is a model determined on the basis of experimental data and it
is a shortened version of the solution of the diffusion equation by Crank (1975) [25]. In
this model, the release mechanisms are dependent on the sample geometry (thin films,
cylinders, spheres). In that sense, when the Korsmeyer–Peppas model is applied to thin
films, such as the membranes of this study, if the release parameter n is less than 0.5, it
means that drug diffusion is occurring through a partially swollen matrix and through a
solution-filled network mesh [26]. If n = 0.5, the Fickian diffusion is controlling the release
and the solvent penetration is the rate-limiting step. On the other hand, if 0.5 < n < 1,
then this is related to a non-Fickian release, which is the release of the extract controlled
by both diffusion and erosion mechanisms. If n = 1, then the release corresponds to
the zero-order model, where the release of the extract is independent of time [9]. In that
sense, according to the results from the Korsmeyer–Peppas model, the n values for the
four types of membranes were lower than 0.5; this indicates that the release of the extract
was controlled by a diffusion occurring through a partially swollen matrix, which could
be produced by the polymer chains relaxation. Moreover, the kKP parameter is related to
the interaction between the extract and the constituent polymers of the membrane, and
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higher values mean higher rates of release. According to this, the kKP values obtained for
the samples presented the following tendency:

CAPS > CAP > CAS > CA.

This means that the porous membranes (CAPS and CAP) generated a faster release
probably due to the pores of the polymeric matrix, which facilitated the absorption of
water from the release medium (PBS). On the contrary, for membranes without pores
(CAS and CA), which are more compact and dense, the absorption of water would be
limited, and as a consequence, the release of the extract, too. As CAS and CA samples
obtained higher amounts of extract release than CAPS and CAP (Figure 2), this means that
faster release of CAPS and CAP was mainly controlled by the porous membrane cross-
linked structure rather than the concentration differential. On the other hand, although
the Weibull model has been criticized for the lack of a kinetic basis for its use and for the
non-physical nature of its parameters, according to different works, the Weibull function
demonstrated that the exponent β, for polymeric matrices, is an indicator of the mechanism
of transport of the drug through the matrix related to the exponent n of the power law
model [17,27–29]: a value of β less than or equal to 0.75 was associated with Fick diffusion
in either fractal or Euclidean space, while a combined mechanism (Fick diffusion and
swelling controlled transport) was associated with β values in the range 0.75 < β < 1. For
β > 1, drug release involves complex mechanisms, which imply that the release rate does
not change monotonically. In fact, the release rate initially increases nonlinearly up to an
inflection point and then decreases asymptotically.

According to the above, the results obtained for the Weibull β parameter (Table 2)
indicated that the mechanism of release was Fickian diffusion (β less than or equal to
0.75). However, it is also important to identify the polymeric matrix geometry in this
β range [27]: for β < 0.35, diffusion occurs in highly disordered spaces, differently than
the percolation cluster; for 0.35 < β < 0.69, diffusion occurs in a fractal substrate; for
0.69 < β < 0.75, diffusion takes place in a normal Euclidean space. These results suggest
that the non-porous membranes (CA and CAS) present a fractal structure, and the porous
formulations (CAP and CAPS) show highly disordered structures. Fractal organization
of CA and CAS samples could be originated during the association of alginate carboxylic
groups (-COO−) with chitosan amino groups (-NH3+) [7,30]; meanwhile, the polymeric
matrices of CAP and CAPS were highly disorganized by the pores formation.

As a summary, the release of A. chica extract from all membrane formulations occurred
by a Fickian difussion, what was confirmed by both Korsmeyer–Peppas and Weibull
models. Moreover, the Weibull model suggested that non-porous membranes (CA and
CAS) had fractal geometry and that porous membranes (CAP and CAPS) were highly
disorganized structures.

Furthermore, in this work, the cost function is presented as a tool to analyze different
mathematical models that simulate experimental data of release profiles of A. chica extract
from C/A membranes to a greater extent. Accordingly, Figure 4 shows the cost function
simulations applied to each model (Zero-order, First-order, Higuchi, Korsmeyer–Peppas
and Weibull) in each membrane type (CA, CAS, CAP and CAPS), and Table 3 presents the
parameters obtained. The lower the fitted cost function value (F), the more efficient the
model. Conversely, when the cost function value is higher, the model is less effective.

According to the results obtained by the cost function, F values in Table 3, the best
simulations were performed by

Weibull > Korsmeyer–Peppas > .
> Higuchi > First-order > Zero-order,

which is similar to the previous results. However, it is important to highlight that using
the cost function, the Weibull model fits better to the release profiles than the Korsmeyer-
Peppas model for all the membranes. Note that in the case of the Weibull model e1 and
e2 correspond to α and β, respectively, and the e3 value, which is Ti, was not reported
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because it is zero for all cases (Table 2). According to the cost function results, CA, CAS
and CAP formulations would present a Fickian diffusion through a polymeric matrix of
fractal geometry, and only the CAPS membrane would have a highly disordered matrix.
This partially different result compared to the case when the cost function is not applied
can be due to the fact that F values of the Weibull model are around 10 times lower—i.e.,
10 times mores precise—than the Korsmeyer–Peppas model. Without the use of the cost
function, the r2 of both models are very similar. In that sense, the cost function presents a
significant advantage, which is a higher fitting sensitivity.

Table 3. Summary of results of the cost function fitting.

Results CA CAS CAP CAPS

Zero-order
e1(k0) 0.153± 0.006 0.143± 0.005 0.162± 0.008 0.159± 0.004

F 89, 011± 6396 77, 665± 5433 99, 925± 9832 94, 746± 6789

First-order
e1(k1) 0.340± 0.013 0.360± 0.003 0.512± 0.007 0.561± 0.009

F 15, 192± 3755 17, 626± 311 36, 954± 2754 31, 566± 1140

Higuchi
e1(kH) 0.392± 0.700 0.390± 0.400 0.411± 0.100 0.381± 0.800

F 8076± 302 7995± 165 8901± 44 7615± 319

Korsmeyer-Peppas
e1(kKP) 0.514± 0.004 0.549± 0.010 0.61± 0.008 0.671± 0.003
e2(n) 0.321± 0.005 0.241± 0.006 0.192± 0.001 0.152± 0.003

F 2388± 102 2767± 73 3570± 97 4550± 67

Weibull
e1(α) 0.133± 0.003 0.13± 0.002 0.11± 0.003 0.09± 0.012
e2(β) 0.521± 0.005 0.51± 0.003 0.402± 0.005 0.32± 0.006

F 292± 2 271± 6 298± 5 316± 5

Figure 4. Cost function simulations of the mathematical models (Zero-order, First-order, Higuchi and
Korsmeyer–Peppas and Weibull) used in each membrane: CA, CAS, CAP and CAPS.
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6. Conclusions

This work consisted on studying the performance of in vitro experimental A. chica
extract release profiles obtained from four different formulations of chitosan/alginate
membranes: a dense membrane (CA), a dense and flexible membrane (CAS), a porous
membrane (CAP), and a porous and flexible membrane (CAPS). The mechanism of the
extract release kinetics was determined comparing classic models from the literature: Zero
Order, First Order, Higuchi, Korsmeyer–Peppas and Weibull. Furthermore, in order to
improve the mathematical analysis between the models, and as the main novelty of this
work, the cost function was presented as a tool to analyze these different mathematical
models that simulated the release profiles and were compared to experimental data. Our
method explored how some metrics and weights of the cost function impact on the results
of the release models that describe experimental information for drug delivery release
processes. Our results indicated that the use of the proposed model parameter optimization
by the cost function, which better fits the experimental data, had the significant advantage
of showing a higher fitting sensitivity.
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